Resumo Técnico

P317 – Desenvolvimento de ferramenta para identificação, posicionamento, rastreabilidade e detecção de leitura de ativos subterrâneos de concessionárias de óleo e gás

Daniel Nobre Mendonça¹

Comgás - Companhia de Gás de São Paulo Indution Inovação Industrial LTDA

Resumo – Pesquisa e desenvolvimento de projeto para busca e detecção de ativos subterrâneos (tubulações e válvulas), com integração de tecnologias de geoprocessamento, e identificação por radiofrequência (RFID), com o objetivo de diminuir o quantitativo de danos causados nos ativos.

Palavras-chave: localização; RFID; ativos

Introdução

A Comgás possui aproximadamente 21.000 quilômetros de rede instalada em sua área de concessão, e 2.5 milhões de clientes atendidos nos dias de hoje.

As concessionárias de distribuição de gás têm que lidar com o risco eminente de danos em sua rede de distribuição.

Tais incidentes podem ser danosos para todo o ecossistema envolvido nessa operação, desde o cidadão que utiliza uma via pública ou tem um desabastecimento de fornecimento de gás em sua residência, até o colaborador que realiza o reparo dos ativos danificados.

Anualmente, a Comgás possui aproximadamente 200 incidentes provenientes desses danos, seja causado por terceiros, outras concessionárias e sua própria operação.

A proposta deste projeto é desenvolver uma solução capaz de detectar ativos subterrâneos sem a necessidade de confiar somente documentações desatualizadas, implantando tags RFID passivas nos ativos a serem monitorados, onde não seria necessária a troca de baterias de tempos em tempos, visando a facilidade de identificar os ativos e redução de custo operacional nas operações.

A partir de estudos realizados, buscando a melhor eficiência na operação, foi feita uma pesquisa em busca dos melhores equipamentos existentes em diferentes lugares do mundo para agregarmos em uma solução única, visando a devida rastreabilidade destes ativos, além da criação de painéis de monitoramento das atividades, para detecção inteligente de potenciais

incidentes que possam vir a acontecer em obras e assentamentos.

Foi pensada uma solução de pouca necessidade de infraestrutura e acesso em

ambientes afastados (Cloud, Mobile) para se transferir as informações necessárias para o software de gestão de ativos.

Desenvolvimento

A metodologia utilizada para o desenvolvimento do produto foi o Scrum, uma metodologia ágil de desenvolvimento de software focada nas necessidades do cliente / stakeholders, na transparência do processo entre todos os envolvidos no time de desenvolvimento (desenvolvedores, analistas, arquitetos, líderes e gerente de projetos) e na diminuição do tamanho das tarefas e atividades a serem desenvolvidas, para se disponibilizar os entregáveis do projeto em pouco tempo de desenvolvimento, comparando a metodologias tradicionais. Com isso, os milestones são realinhados a cada 2 a 4 semanas, trazendo eficiência para a operação e entrega de valor conforme as demandas são validadas.

Os trabalhos foram desenvolvidos conforme listagem abaixo:

A. Descoberta

Entendimento de todos os detalhes envolvidos em obras e assentamentos, considerando os diversos cenários existentes de cada operação (vala aberta, furo direcional, tubulação passando por baixo de solos como terra, cimento, asfalto).

B. Levantamento

Após o entendimento do cenário in loco e todas as informações coletadas, foi realizada uma pesquisa de mercado devido à complexidade do projeto. Foram realizados testes com distintos leitores móveis (handheld),

leitores fixos e tags RFID para se conseguir uma distância de leitura ideal para o projeto.

C.. Software de Gestão

Foi realizado o desenvolvimento de um software de gestão, contendo o mapeamento de obras e assentamentos em tempo real, juntamente com software Web para acompanhamento das informações e indicadores de localização dos ativos, e solução Mobile (Android) para conexão com leitores e tags e identificação de ativos em campo. O software foi desenvolvido em tecnologia .NET em sua essência, contendo arquitetura de comunicação com acesso à base de dados (API RESTFUL), sistema Web (.NET Core), aplicativo Android (Xamarin.Forms), banco de dados (SQL Server) e hospedado em ambiente de computação em nuvem (Azure). Para controle de localização (latitude, longitude) dos ativos e assentamentos, utilizamos API de integração do Google Maps, onde no momento do cadastro das tags, é efetuada a busca de localização do dispositivo a ser monitorado, atualizando as informações para a base de dados. Pensando em uma infraestrutura de poucos recursos em algumas bases, as informações eram armazenadas

internamente no dispositivo, por meio

de SQLite.

Resultados

Após realizar os testes com os equipamentos buscados, foi realizado um teste in loco em alguns assentamentos, nas cidades de Paulínia e Campinas. O primeiro teste foi realizado na cidade de Paulínia, em uma obra de vala aberta, onde os equipamentos foram devidamente cadastrados para se tentar identificar a leitura dos ativos subterrâneos. As tubulações estavam enterradas a uma profundidade de 1.60m, onde o leitor utilizado não conseguiu identificar os ativos. Após isso, realizamos um teste em uma obra de furo direcional na cidade de Campinas, onde a tubulação estava a uma profundidade de 1.10m, e conseguiu ser identificada pelos equipamentos. Após isso, foi realizado outro

teste na cidade de Campinas, onde a identificação do ativo não foi bem sucedida a uma distância de 1.30m. Após os resultados dos testes não serem satisfatórios para o cenário real da solução, trouxemos diferentes leitores e tags para a realização de testes de laboratório, onde detectamos que a distância de leitura máxima para a identificação de ativos subterrâneos, com os equipamentos utilizados, é de até 1.20m. Verificada a dificuldade de prosseguir com o projeto para diferentes cenários, ambas as equipes (Comgás e Indution) optaram em conjunto pela interrupção do projeto devido à limitação da tecnologia para cenários mais complexos.

Conclusões e Contribuições

A solução proposta tem, nos dias atuais, uma limitação devido à aderência da tecnologia RFID para este cenário, juntamente com a dificuldade de fixação da tag em operações de furo direcional, pois tags RFID que são submetidas a cenários de alta exposição, como umidade do solo, chuvas e altas temperaturas precisam ter uma proteção e ser mais robustas, onde foi detectado que em operações de furo direcional, as tags não possuem as aderências necessárias para a sustentação durante a puxada da tubulação, caindo no solo e dificultando o controle efetivo

dos ativos. Portanto, no momento, a tecnologia RFID passiva não conseguiu obter o resultado esperado no projeto.

Referências

The RF in RFID, UHF RFID in Practice, 2nd Edition, Daniel M. Dobkin – Editora Newnes, 2012